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Abstract

In this work, a method based on the Dual Reciprocity Boundary Element along with Sequential Function Speci-

fication scheme is suggested for solving two-dimensional inverse heat conduction problems involving unknown time

and space varying boundary heat flux estimation. The measured transient temperature data utilized in the solution may

be from locations inside the body or from locations on its inactive boundaries. The spatial variation of the unknown

heat flux is approximated using polynomials, which is shown to conveniently reduce the number of unknowns in the

inverse algorithm. The effectiveness and the reliability of the method are verified via a set of test data obtained by

simulated experiments, which take into consideration various boundary heat flux characteristics.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Inverse heat conduction problems (IHCP) have re-

cently found wide applications in industries. These ap-

plications are categorized as identification, design, and

control problems [1]. More specifically, IHCP involves

estimation of surface boundary conditions, thermo-

physical properties, or volumetric heat generation using

some temperature data collected from locations within

or on the surfaces of the body.

Any IHCP algorithm, regardless of its theoretical

approach, requires the usage of a well-established solu-

tion routine for direct heat conduction calculations. This

solution routine may be called upon numerous times by

the main IHCP computational routine. Therefore, use of

a highly efficient as well as accurate direct calculation

schemes is essential in any IHCP code. Different nu-

merical methods including the finite difference, the finite
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element, and the boundary element methods have been

used as computational tools for direct discretization in

IHCP. Amongst these methods, the BEM reduces

problem dimensionality by one, which clearly saves

computational time and memory. In fact by bypassing

the normally complex internal grid generation process,

the BEM is particularly adaptable for analyzing irreg-

ularly shaped bodies as is desired in many practical

applications. Flexibility of choosing thermocouple lo-

cations within the body is the other advantage of using

BEM in IHCP.

Due to these computational advantages, the bound-

ary element method has increasingly received greater

attention in recent years. Application of BEM for steady

problems is straightforward, and the theories are well

established [2]. The unsteady problems are, however,

much more difficult to deal with using the BEM even

though several methods have been developed in this

regard. Some of these methods require domain integra-

tion, which causes the main advantage of the BEM; i.e.

elimination of the domain discretization, to be lost. Two

boundary only form methods, which have received

greater attentions, are the Dual Reciprocity and the
ed.
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Nomenclature

A m� 1 matrix of unknown coefficients

C n� m matrix

d constant amplitude

f ðrÞ coordinate function

G fundamental solution of Laplace equation

m the number of unknown coefficient

mk degree of polynomial

N the number of boundary points

Np the total number of points (boundary and

Dual Reciprocity points)

Nu Nusselt number

n the number of heat flux components or

normal direction

nt the number of thermocouples

P Np � Np matrix

p the number of segments or a random num-

ber between 0 and 1

q heat flux

qex exact heat flux

qes estimated heat flux

R Np � N matrix

r the number of future time steps

rj distance to the source point

S Np � N matrix

s spatial variable

T temperature

t time

W diagonal weighting matrix

x spatial variable

y spatial variable

Y measured temperature

Z sensitivity coefficient

Greek symbols

a arbitrary real constant used in Eq. (2)

b interpolating coefficient

g relative percentage error

Dl boundary element length

Dt time step

k shape coefficient

X two-dimensional surface domain

C boundary of X

Subscripts

i, j, k indices for time, thermocouples, nodes, heat

flux components, or segments

M time index
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so-called Convolution method. The latter method em-

ploys a time dependent fundamental solution in which,

in order to avoid the domain integration, one is forced

to restart the time integration from the initial condition

for each time step calculation. All of the temperatures

and related coefficients should be kept in memory to

perform this integration at each time step. This makes

the technique time and memory consuming if the num-

ber of time steps is large, even though the method has a

boundary only character [3]. The former method, de-

veloped later, eliminates this difficulty by using the

fundamental solution of the Laplace equation. In this

method the time derivative term, treated as a source, is

transferred to the boundary by using the Dual Reci-

procity Method [4]. The method was first developed for

linear problems but later was extended successfully to

different kinds of nonlinear problems involving tem-

perature dependence thermal properties using the kir-

chhoff transformation [4–6].

Most of previous applications of BEM in inverse heat

conduction have been concerned with time-dependent

fundamental solution method (i.e., the convolution ap-

proach). Kurpisz and Nowak proposed an IHCP algo-

rithm using a combination of the Sequential Function

Specification and regularization methods [7]. Chanta-

siriwan used the Sequential Function Specification

without extra (Tikhonov) regularization [8]. Lesnic, El-
liott and Ingham proposed a whole domain method

based on minimizing kinetic energy for solving a one-

dimensional problem [9]. Huang and Chen used the

conjugate gradient method for irregular shapes [10].

Finally, Pasquetti and Niliot utilized Tikhonov regu-

larization [11].

In this work the major concern is combining the Dual

Reciprocity BEM and the Sequential Function Specifi-

cation method for estimation of unknown boundary

heat flux in a two-dimensional configuration. Sequential

algorithms have the advantage of being highly efficient,

as compared to the whole domain methods, without a

significant loss in accuracy [12]. A thorough search in

the existing literature has revealed that the only reported

work, which has utilized the Dual Reciprocity BEM in

conjunction with an IHCP algorithm, is that due to

Tanaka and Krishna [13] in their whole domain conju-

gate-gradient method. However, owing to the popularity

and the great utility of the Sequential Function Specifi-

cation IHCP algorithm, use of the Dual Reciprocity

BEM with this algorithm deserves greater attentions.
2. Problem statement

The geometry of a general two-dimensional problem

is illustrated in Fig. 1. The boundary condition along C1



Fig. 1. Geometry of a general two-dimensional problem.
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is known, while on C2, it is unknown. This unknown

boundary condition could be temperature, heat flux, or

convective heat transfer coefficient, although heat flux

estimation is the object of the present work.

The governing differential equation along with initial

and boundary conditions can be expressed in a dimen-

sionless form as

o2T
ox2

þ o2T
oy2

¼ oT
ot

X ð1Þ

oT
on

þ aT ¼ f ðx; y; tÞ C1 ð2Þ

oT
on

¼ qðs; tÞ C2 ð3Þ

T ðx; y; 0Þ ¼ 1:0 X ð4Þ

Y ðxj; yj; tiÞ ¼ gjðtiÞ j ¼ 1; . . . ; nt ð5Þ

The function qðs; tÞ is known in a direct problem, but is

unknown in an inverse problem and is to be estimated

using temperatures measured by sensors located inside

the physical domain or on the boundary surfaces de-

scribed by Eq. (5).
3. Direct solution

The Dual Reciprocity Boundary Element method is

used for solving Eq. (1). In this methodology, the time

derivative of the temperature is treated as a source term

and the fundamental solution of Laplace equation is

used as followed

G ¼ 1

2p
LnðrjÞ: ð6Þ

Using Eq. (6), the weighted integral of Eq. (1) can be

given as
Z
X
Gðr2T ÞdX ¼

Z
X
GT

oT
ot

dX; ð7Þ

where X defines the domain of integration. Using the

Green’s second identity Eq. (7) can be written as

kT ðrj; tÞ �
Z
C

T
oG
on

�
� G

oT
on

�
dC ¼

Z
X
G
oT
ot

dX; ð8Þ

where C represents the boundary of the domain X, and k
is the shape coefficient.

The right hand side of Eq. (8) can now be manipu-

lated by using a secondary interpolation to reduce it to a

boundary only form. One may write

oT
ot

¼
XNp

J¼1

f ðrjÞbjðtÞ: ð9Þ

The function f ðrÞ can be of various types, for example

polynomial of any chosen degree, but the following

function is found to be the most versatile as shown by

computational studies [2]

f ðrÞ ¼ 1þ r: ð10Þ

A few internal points known as Dual Reciprocity points

and boundary points are used for the above interpola-

tion.

By substitution of Eq. (9) into Eq. (8) and performing

some mathematical manipulations, which can be found

in Ref. [4], one may obtain

½R� oT

on

� �
� ½S�½T� ¼ ½P� oT

ot

� �
: ð11Þ

Different methods are used to discretize the time

derivative, including one-step, and multi-step h schemes,

and a series of schemes known as least square methods.

The accuracy and stability of these schemes as applied to

the Dual Reciprocity BEM are compared in several

references such as [4,14]. Implicit h scheme was used in

this work due to its simplicity and reported adequate

accuracy. Thus

oT
ot

� �tþDt

¼ 1

Dt
½T tþDt � T t�: ð12Þ

Combining Eqs. (11) and (12), one can obtain

½S�½T�tþDt � ½R� oT

on

� �tþDt

þ 1

Dt
½P�½T�tþDt � 1

Dt
½P�½T�t ¼ 0:

ð13Þ

Eq. (13) can now be used for solving the direct problem.

Different references have reported presence of a lower

stability limit for the time steps. This is usually given in

the order of [4]
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Dt

ðDlÞ2
� 1; ð14Þ

where Dt and Dl denote, respectively, the dimensionless

time step and length of elements.

In this work, small time steps were selected in order

to resolve the sensitivity coefficients (used in inverse

calculations), which show the characteristics of a ther-

mal shock (i.e., a sudden rise in the heat flux with time)

more accurately. To suppress round-off errors, the

length of elements was used as the characteristic length

for nondimesionalizing the heat equation. This selection

makes the nondimensional length elements and time

steps to be both in the order of unity.
4. Inverse solution

4.1. An overview of the inverse methods

A number of solution techniques have been proposed

to treat the ill-posed nature of inverse heat conduction

problems, a thorough review of which can be found in

Ref. [1]. These methods can in general be separated into

sequential and whole domain methods.

Historically, sequential methods were developed in

the US while the whole domain methods were developed

in Russia. There is some literature about the comparison

of various methods [12]. Each of these methods has its

own advantages as described below.

The main benefits of sequential methods over their

whole domain counterparts are as follows:

(a) The sequential methods can be used in real time

mode.

(b) In nonlinear problems due to temperature depen-

dence of thermal properties, sequential methods

provide the possibility of temporary linearization

of the problem.

(c) Sequential methods require less memory and compu-

tational time.

The whole domain methods have their own advan-

tages as well. For example it has been shown that the

conjugate gradient method, which is one of the most

successful whole domain algorithms, works well in cases

where the unspecified boundary condition covers a big

fraction of the boundary [10,13]. This method can be

used in a sequential manner as well; however, it loses

most of its advantages when it is employed sequentially

[15].

Sequential Function Specification method was pro-

posed by Beck [16] for one-dimensional problems and

was later developed for two-dimensional problems

[17,18]. This method can be improved, as is shown in

this paper, in the case of a large number of unknown
heat flux components by using piece-wise polynomials,

which automatically reduces the number of unknowns

or using a combination of Sequential Function Specifi-

cation and space Tikhonov regularization [18]. The

combined Sequential Function Specification and regu-

larization is appropriate for cases where there is a large

and sharp variation in spatial distribution of surface

heat flux or when there are a relatively large number of

parameters to be determined as compared to the number

of sensors [18].

4.2. Sequential function specification method

To estimate a space and time varying heat flux

function, the active surface is broken up into ‘‘n’’ ele-
ments, each with a constant heat flux component. It is

temporarily assumed that heat flux components are

constant over ‘‘r’’ future time steps, i.e.,

qM ¼ qMþ1 ¼ � � � ¼ qMþr�1; ð15Þ

where vector qj is defined as

qTj ¼ ½qjð1Þ; qjð2Þ; . . . ; qjðnÞ�: ð16Þ

The objective function to be minimized in order to es-

timate qM is defined as

S ¼
Xnt
j¼1

Xr

i¼1

Wi;j½Yj;Mþi�1 � Tj;Mþi�1ðqM Þ�
2
; ð17Þ

where, according to [18], using a Taylor expansion of the

calculated temperatures about q�, which in essence is an

initial guess for the unknown heat flux component, we

would have

Tj;Mþi�1ðqM Þ ¼ Tj;Mþi�1ðq�Þ þ
Xn

k¼1

Zj;i;kðqM ðkÞ � q�M ðkÞÞ;

ð18Þ

and

Zj;i;k ¼
oTj;Mþi�1

oqM ðkÞ
ð19Þ

is the sensitivity coefficient. The value of ‘‘q�’’ is usually

set equal to zero or equal to ‘‘qM�1’’.

It is sometimes possible to replace the spatial varia-

tion of the heat flux over the entire or part of the active

surface by using a polynomial fit. This spatial estimation

decreases the number of unknown components, which

improves stability of the inverse solution. The heat flux

imposed on the active surface is split into spatial seg-

ments, each represented by a constant or nth order

polynomial with time dependent coefficients. The degree

of polynomial to be chosen is at the discretion of the

analyst, and depends on a priori estimate of the spatial

variation of the heat flux. For cases considered in this
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work a second order polynomial appeared to provide

sufficiently accurate results.

Thus the function qðs; tÞ, in Eq. (3), may be written as

qðs; tÞ ¼
Xp

k¼1

/kðs; tÞ; ð20Þ

where /k is a mkth degree polynomial along the kth
segment and zero elsewhere. That is

/kðs; tÞ ¼ akðmkÞsmk þ akðmk � 1Þsmk�1 þ � � � þ akð0Þ;
sk < s < skþ1 ð21Þ

and

m ¼
Xp

k¼1

mk þ p: ð22Þ

The parameter ‘‘m’’ is the total number of unknown time

dependent coefficients.

Using the definitions given above, the system of

equations for the unknown heat flux may be written in

matrix form as

½q�n�1 ¼ ½C�n�m½A�m�1; ð23Þ

where ‘‘A’’ is the matrix of unknown coefficients defined

as

AT ¼ ½Að1Þ;Að2Þ; . . . ;AðpÞ�; ð24aÞ

ATðkÞ ¼ ½akð0Þ; . . . ; akðmkÞ�; ð24bÞ

and matrix [C] is found from Eq. (21).

The weighted least squares norm may be written in

matrix form using Eq. (23)

S ¼ ½Y� ðTðq�Þ þ ZCðA� A�ÞÞ�TW½Y� ðTðq�Þ
þ ZCðA� A�ÞÞ�: ð25Þ

Minimizing S with respect to A gives

A ¼ A� þ ½ðZTWZÞC��1
ZTWðY� T�Þ: ð26Þ

The above equation is used sequentially to estimate

matrix ‘‘A’’, which in turn, is used to determine qM using

Eq. (23).
Fig. 2. Geometry and position of thermocouples for the first

test case.
5. Numerical results

Two simulated numerical experiments were used to

demonstrate accuracy and stability of the method. In the

absence of an exact analytical solution and to avoid a

‘‘biased’’ inverse estimate, the finite difference method

(instead of BEM) was used to generate the numerically

simulated experimental data. This ensures independency

of the estimation to the method used to produce mea-

surement data.
In order to make the situation even more realistic,

simulated measured temperatures are perturbed by a

random function as follows [1];

Y ¼ T þ dð1� 2pÞ: ð27Þ

The amplitude of the error, d, is varied to evaluate the

quality of the inverse estimator and the sensitivity of the

inverse solution to temperature measurement errors.

To measure the accuracy of the inverse solution, the

relative percentage error is defined as follows

g ¼ kqex � qeskr:m:s:

kqexkr:m:s:

� 100; ð28Þ

where j � jr:m:s denotes the r.m.s. of a time dependent

function and is defined in Ref. [19].

5.1. Test case1

The geometry of the problem and the position of

thermocouples are illustrated in Fig. 2. The boundary

conditions imposed along S1, S2 and S3 (i.e., inactive

surfaces) are all adiabatic. The spatial variation of the

heat flux along S4 is modeled by three heat flux compo-

nents, the temporal characters of which are shown in Fig.

3. This test case demonstrates the estimation of a spatially

distributive heat flux by approximating it with indepen-

dent components. Two arrangements of thermocouples

are considered in this problem. In the first arrangement,

denoted by C1, the thermocouples are all located on the

adiabatic surface opposite to the active one; while in

the second arrangement (C2), they are located close to the
active surface. In this problem, the matrix ‘‘C’’ in Eq. (23)

can be found easily by considering three segments (p ¼ 3)

with constant heat flux distributions.

The estimated and exact values for two error ampli-

tudes of (d ¼ 0:02 and 0.04) using thermocouple



Fig. 3. Estimated and exact heat flux components for the first

test case and thermocouples arrangement (Dt ¼ 1:6, r ¼ 10,

d ¼ 0:02).

Table 1

The effect of measurement errors on the solution for the first

test case with C1 thermocouple arrangement (Dt ¼ 1:6, r ¼ 15)

d 0 2 · 10�3 0.02 0.04 0.1

g2 2.85 4.31 26.78 52.63 136.36

Table 2

The effect of measurement errors on the solution for the first

test case with C2 thermocouple arrangement (Dt ¼ 1:6, r ¼ 10)

d 0 2 · 10�3 0.02 0.04 0.1

g2 2.41 2.48 4.21 6.98 16.01
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arrangement C2 are compared in Figs. 3 and 4. Results

show a fairly accurate estimation for the duration in

which the heat flux is imposed, except for a reduction of

the accuracy nearby and after discontinuity for the third

heat flux component.

Tables 1 and 2 compare the percent error norm of the

second heat flux component for the two thermocouples

arrangements. The comparison is made for increasing

values of the error amplitude, d. Comparison clearly

demonstrates the well-known ‘‘damping effect’’ in IHCP

as the sensitivity to measurement errors is increased

visibly for the thermocouple arrangement C1 which is
Fig. 4. Estimated and exact heat flux components for the first

test case and C2 thermocouples arrangement (Dt ¼ 1:6, r ¼ 10,

d ¼ 0:04).
far from the active surface. Nonetheless, the error norm

is still within an acceptable engineering range (i.e., less

than approximately five percent) for error amplitudes of

2· 10�3, and less, for this thermocouple arrangement.

The error norm for the thermocouple arrangement C2 is

satisfactory for all error amplitudes considered except

d ¼ 0:1. It should be mentioned this is a relatively high

value for the error amplitude. The simulated test (i.e.,

‘‘measurement’’) data show a maximum thermocouple

temperature of 2.18 which means error amplitude of

(d ¼ 0:1) is about 5% of this maximum ‘‘measured’’

temperature. This relatively high error value affects the

data particularly in the beginning of the estimation in

which the ‘‘measured’’ temperatures have small values

and during which this error amounts to almost 10% of

the measured temperature level.

The effect of the number of future data, r, for two

error amplitudes is shown in Table 3. As is seen, the

results are generally improved by increasing the number

of future data. The effect of increasing the number of

future data is to reduce the sensitivity to noise and, at

the same time, to increase the deterministic bias errors.

It is seen, however, that increasing the number of r has a
clear improving effect on data having high noise levels,

i.e. d ¼ 0:1, whereas its effect on data with lower noise

level is not as apparent; in fact as going from r ¼ 10–15

the value of error norm has increased which should be

attributed to increasing the deterministic bias error.

Therefore, one can conclude from these results that the

optimum value of the number of future time steps de-

pends on amplitude of the measurement errors. For

higher noise levels, more future data are required to

damp oscillation and to get a stable solution.
Table 3

The effect of number of future time steps on the solution for the

first test case with C2 thermocouple arrangement (Dt ¼ 1:6)

d 0.1 0.02

r 8 10 15 8 10 15

g2 18.21 16.01 11.82 4.28 4.21 4.60



Fig. 6. Comparison of estimated heat flux and heat flux cal-

culated by direct solution for the second test case and C2
thermocouples arrangement (Dt ¼ 1:0, r ¼ 12, x ¼ 4:5).
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In a problem with sharp heat flux variations (spa-

tially), the use of more components may become nec-

essary. The difficulty of this type of problem is due to the

fact that the sensitivity coefficients become correlated, as

small differences in adjacent heat flux components are

not differentiated by the thermocouples. One such case

was considered by Krishna and Tanaka [13], where de-

spite limiting the noise levels to a value as low as 0.1% of

maximum temperature, they had to place the thermo-

couples close to the active surface in order to be able to

resolve and estimate the heat flux components. The test

case that follows next suggests a possible remedy for this

difficulty.

5.2. Test case2

In this test case, it is shown how a polynomial can be

used to estimate the spatial variation of the unknown

boundary condition by reducing the number of un-

known components and, therefore, the sensitivity of the

solution to the thermocouples’ locations. The geometry

and location of the thermocouples are the same as the

previous test case except that in this case a Robin

boundary condition is imposed on surface S4, i.e., the
active surface (Fig. 5). The spatially varying Nusselt

number is calculated, using the suggested correlation in

Ref. [20] for a jet impinging on a surface.

Ten heat flux components, which are distributed on

the active surface by a second order polynomial, are

used to estimate the spatial distribution of heat flux. The

total number of unknowns (‘‘m’’) is three while the

number of heat flux components ‘‘n’’ is 10. Once again

matrix ‘‘C’’ in Eq. (23) can be determined in a

straightforward manner.

In Fig. 6 the estimated heat flux on (x ¼ 4:5) is

compared with exact values (i.e., those obtained from

the direct solution) for two different noise levels. For the

lower noise level (d ¼ 0:001), the estimated heat flux

corresponds to the exact value very closely. For higher
Fig. 5. Geometry and position of thermocouples for the second

test case.
noise levels (d ¼ 0:01) the estimated heat flux gyrates

more noticeably, although in a controlled manner, about

the exact values.

The spatial distributions of estimated heat flux at

time t ¼ 20 obtained by using a second order polynomial

approximation are presented in Figs. 7 and 8 for the

same two noise levels as in Fig. 6. Once again results

show that the method is able to predict the spatial dis-

tribution of the heat flux accurately. In particular, the

results of Fig. 8, which is for a low error amplitude,

show that a second order polynomial can estimate the
Fig. 7. Comparison of spatial distribution of estimated heat

flux and heat flux calculated by direct solution, the second test

case with C2 thermocouples arrangement (Dt ¼ 1:0, r ¼ 12,

d ¼ 0:01, t ¼ 20).



Fig. 8. Comparison of spatial distribution of estimated heat

flux and heat flux calculated by direct solution, second test case

with C2 thermocouples arrangement (Dt ¼ 1:0, r ¼ 12,

d ¼ 10�3, t ¼ 20).
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spatial distribution of heat flux without causing a high

value of bias error. The estimated heat flux distribution

shown in Fig. 8, is on the most part within 8% of the

exact value except at one of the ends (x ¼ 0:5) where the
error is as high as 18%. Seemingly, due to the error in

estimation of unknown coefficients, the polynomial does

not approximate the exact heat flux at this corner ac-

curately. The difficulty of estimating the heat flux near

corners, has also been reported by previous investigators

who have broken up the unknown heat flux distribution

into independent components [21].
Table 4

The effect of measurement errors on the solution for the second

test case with C1 thermocouple arrangement (Dt ¼ 1:0, r ¼ 12)

d 0 10�3 0.01 0.02 0.05

g 5.68 7.78 53.89 107.38 268.22

Table 5

The effect of measurement errors on the solution for the second

test case with C2 thermocouple arrangement (Dt ¼ 1:0, r ¼ 12)

d 0 10�3 0.01 0.02 0.05

g 0.72 0.972 5.79 11.41 28.34

Table 6

The effect of time step on the solution for the second test case with C

r 6

Dt 0.1 0.2 0.5 1.0 2.0

g 39.78 20.62 11.46 9.46 9.16
The norms of error for two thermocouple locations

are presented in Tables 4 and 5. Again, from the results

in Table 4, it is seen the method fails when the ther-

mocouples are far from active surface except for low

values of noise level (i.e., d ¼ 10�3). When placing the

thermocouples close to the active surface, the results

become satisfactory except for (d ¼ 0:05) which is a

relatively high error amplitude as discussed previously.

The effect of the size of the time step for two different

number of future data parameters of r ¼ 6 and 12 are

shown in Table 6. This table in fact shows the effect of

the size of the steps of the Fourier number (as the

problem was originally posed in a dimensionless form),

which also includes the effects of the thermal diffusivity

of the material. Considering the lagging effect in IHCP,

the size of the time step is another control parameter (in

addition to r) that can be used in search of the optimum

heat flux. By referring to Table 6 it can be seen that for

r ¼ 6 the optimum solution is achieved by Dt ¼ 2:0,
while for r ¼ 12, the optimum is achieved by Dt ¼ 1:0.
In fact if there is a limit in the number of future data,

one has to use a bigger step size in time which, in some

cases, may cause unwanted bias errors. From the ther-

mal diffusivity perspective, these results show that ma-

terials with smaller thermal diffusivity require a bigger

time step, which is due to the well-known lagging effect

as there would be a larger delay in sensing the imposed

heat flux by the thermocouples.
6. Conclusion

A scheme based on the Dual Reciprocity Boundary

Element along with Sequential Function Specification

method was used successfully for solving two-dimen-

sional inverse heat conduction problems. Two test cases

were considered, and the suggested scheme was able to

perform the estimation accurately for data noise levels

of up to 2% of the maximum measured temperature, if

the thermocouples were placed close to the active sur-

face. This level of performance is within the range of

what is expected from a direct discretization method; not

including the efficiency of the Dual Reciprocity BEM in

direct calculations as compared to other discritization

schemes. Of course, to achieve accurate inverse estima-

tions beyond these limits, additional regularization may

be required, due to the lagging and damping effect of the

IHCP; as this would have been required if any other

solution technique was used for direct calculations. It
2 thermocouple arrangement (d ¼ 0:01)

12

0.1 0.2 0.5 1.0 2.0

15.16 9.80 6.56 5.79 6.16
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was also shown, via an example, that approximating the

heat flux distribution by an appropriate polynomial,

instead of using a large number of heat flux components,

could make the inverse estimation more efficient, al-

though further investigation may be necessary in this

regard.
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